Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

MA110 - Engineering Mathematics-1
 Problem Sheet - 2

Limits and Continuity in Higher Dimensions

1. Whether the following limits exist or not. Justify your answer. Calculate the limit, if it exists.
(a) $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{x^{2}+y^{3}}{x+y+1}\right)$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{|x y|}$
(b) $\lim _{(x, y) \rightarrow(4,3)} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$.
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-x y^{2}}{x^{2}+y^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}}$
(f) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x}{x^{2}+x+y^{2}}$.
2. Let $f(x, y)=\frac{x+y}{x^{2}+1}$.
(a) Let $\varepsilon=0.001$. Find $\delta>0$ such that $|f(x, y)-0|<\varepsilon$ for every (x, y) with $\sqrt{x^{2}+y^{2}}<\delta$.
(b) Let $\varepsilon=0.001$. Find $\delta>0$ such that $|f(x, y)-1 / 2|<\varepsilon$ for all (x, y) with $\sqrt{(x-1)^{2}+y^{2}}<$ $\delta[$ Hint: Try $\delta=\varepsilon]$.
(c) Show that $f(x, y)$ is continuous at $(1,0)$ by $\varepsilon-\delta$ definition.
3. Show that

$$
\lim _{(x, y) \rightarrow(0,0)}(x+y) \neq 1
$$

using $\varepsilon-\delta$ definition.
4. Show that

$$
\lim _{(x, y) \rightarrow(0,0)} y \sin \frac{1}{x}=0 .
$$

5. Define $f(0,0)$ in a way that extends

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$

to be continuous at the origin.
6. Find all the points where the functions are continuous.
(a) $f(x, y)=\frac{x^{2}+y^{2}}{x^{2}-3 x+2}$
(b) $f(x, y)=\frac{1}{x^{2}-y}$
(c) $f(x, y, z)=\frac{1}{|y|+|z|}$
7. Evaluate $\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+3 y\right)$.
8. Evaluate the following limits, whichever exist,
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \sin (x y)}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+y^{2}+2 x y}{x+y}$
(f) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}-2 x y}{x-y}$
(g) $\lim _{(x, y) \rightarrow(0,0)} e^{x y}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \cos x y$
(h) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}$
9. Let $f(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+\left(x^{2}-y^{2}\right)^{2}}$ for $(x, y) \neq(0,0)$. Show that the iterated limits $\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)$ and $\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)$ exist, but $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
10. Show that the function f defined by

$$
f(x, y)=\left\{\begin{array}{l}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right.
$$

is continuous at $(0,0)$.
11. Show that the function f defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is continuous at $(0,0)$.
12. If $f(x, y)=\frac{x^{2} y^{4}}{\left(x^{2}+y^{4}\right)^{2}}$, then find
(a) $\lim _{x \rightarrow 0} f(x, m x)$
(b) $\left.\lim _{x \rightarrow 0} f(x, \sqrt{x})\right)$.

Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist?
13. Show that the following functions are discontinuous at origin:
(a) $f(x, y)= \begin{cases}\frac{1}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{cases}$
(b) $f(x, y)=\left\{\begin{array}{l}\frac{x^{4}-y^{4}}{x^{4}+y^{4}}, \quad(x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{array}\right.$
(c) $f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{4}+y^{4}}, & (x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{cases}$
14. Show that the following functions are continuous at origin:
(a) $f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
(b) $f(x, y)= \begin{cases}\frac{x^{3} y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
15. Show that the following functions are discontinuous at $(0,0)$:
(a) $f(x, y)= \begin{cases}\frac{x^{2} y}{x^{3}+y^{3}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
(b) $f(x, y)= \begin{cases}\frac{x^{3}+y^{3}}{x-y}, & x \neq y, \\ 0, \quad x=y .\end{cases}$
(c) $f(x, y)= \begin{cases}\frac{x y^{3}}{x^{2}+y^{6}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
16. Discuss the following functions for continuity at $(0,0)$:
(a) $f(x, y)=\left\{\begin{array}{l}\frac{x^{2} y}{x^{3}+y^{3}}, \quad x^{2}+y^{2} \neq 0, \\ 0, \quad x=y=0 .\end{array}\right.$
(b) $f(x, y)=\left\{\begin{array}{l}2 x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{array}\right.$
(c) $f(x, y)=\left\{\begin{array}{l}0, \quad(x, y)=(2 y, y), \\ \exp \left\{|x-2 y| /\left(x^{2}-4 x y+4 y^{2}\right)\right\}, \quad(x, y) \neq(2 y, y) .\end{array}\right.$
17. Show that f has a removable discontinuity at $(2,3)$.
$f(x, y)= \begin{cases}3 x y, & (x, y) \neq(2,3), \\ 6, & (x, y)=(2,3) .\end{cases}$
Suitably redefine the function f to make it continuous.
18. Show that the function f is continuous at the origin, where $f(x, y)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0) .\end{cases}$
19. Can the given functions be appropriately defined at $(0,0)$ in order to be continuous there?
(a) $f(x, y)=|x|^{y}$,
(c) $f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}$,
(b) $f(x, y)=\sin \frac{x}{y}$,
(d) $f(x, y)=x^{2} \log \left(x^{2}+y^{2}\right)$.

